These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cationic surface-modified regenerated nanocellulose hydrogel for efficient Cr(VI) remediation. Author: Kim Y, Bang J, Kim J, Choi JH, Hwang SW, Yeo H, Choi IG, Jin HJ, Kwak HW. Journal: Carbohydr Polym; 2022 Feb 15; 278():118930. PubMed ID: 34973748. Abstract: Because nanocellulose has a large specific surface area and abundant hydroxyl functional groups due to its unique nanomorphology, interest increases as an eco-friendly water treatment material. However, the distinctive properties of nanocellulose, which exists in a dispersion state, strongly hamper its usage in practical water treatment processes. Additionally, nanocellulose shows low performance in removing anionic pollutants because of its anionic characteristics. In an effort to address this challenge, regenerated cellulose (RC) hydrogel was fabricated through cellulose's dissolution and regeneration process using an eco-friendly aqueous solvent system. Subsequently, a crosslinking process was carried out to introduce the cationic functional groups to the RC surface PEI coating (P/RC). As a result, the PEI surface cationization process improved the mechanical rigidity of RC and showed an excellent Cr(VI) removal capacity of 578 mg/g. In addition, the prepared P/RC maintained more than 90% removal efficiency even after seven reuses.[Abstract] [Full Text] [Related] [New Search]