These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation and structural properties of selenium modified heteropolysaccharide from the fruits of Akebia quinata and in vitro and in vivo antitumor activity.
    Author: Wang H, Li Y, Wang X, Li Y, Cui J, Jin DQ, Tuerhong M, Abudukeremu M, Xu J, Guo Y.
    Journal: Carbohydr Polym; 2022 Feb 15; 278():118950. PubMed ID: 34973766.
    Abstract:
    Cancer is a complex disease, and blocking tumor angiogenesis has become one of the most promising approaches in cancer therapy. Here, an exopoly heteropolysaccharide (AQP70-2B) was firstly isolated from Akebia quinata. Monosaccharide composition indicated that the AQP70-2B was composed of rhamnose, glucose, galactose, and arabinose. The backbone of AQP70-2B consisted of →1)-l-Araf, →3)-l-Araf-(1→, →5)-l-Araf-(1→, →3,5)-l-Araf-(1→, →2,5)-l-Araf-(1→, →4)-d-Glcp-(1→, →6)-d-Galp-(1→, and →1)-d-Rhap residues. Based on the close relationship between selenium and anti-tumor activity, AQP70-2B was modified with selenium to obtain selenized polysaccharide Se-AQP70-2B. Then, a series of methods for analysis and characterization, especially scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS), indicated that Se-AQP70-2B was successfully synthesized. Furthermore, zebrafish xenografts and anti-angiogenesis experiments indicated that selenization could improve the antitumor activity by inhibiting tumor cell proliferation and migration and blocking angiogenesis.
    [Abstract] [Full Text] [Related] [New Search]