These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of T-cell functions by L-lactate.
    Author: Dröge W, Roth S, Altmann A, Mihm S.
    Journal: Cell Immunol; 1987 Sep; 108(2):405-16. PubMed ID: 3497729.
    Abstract:
    Lactate is a product of glycolytically active macrophages. After stimulation with concanavalin A accessory cell-depleted splenic T-cell populations were found to produce only minute amounts of T-cell growth factor (TCGF); but substantial amounts of TCGF were produced if the cultures were supplemented either with splenic adherent cells or with lactate but not with interleukin-1 (IL-1). IL-1 was capable, however, of supporting TCGF production by the thymoma subline EL4-6.1. TCGF production in cultures of accessory cell-depleted splenic T-cell populations was demonstrable with 10(-3) M L-lactate, and optimal responses (plateau level) were obtained with 4-6 X 10(-2) M L-lactate. Cultures of macrophages were found to accumulate up to 5 X 10(-2) M lactate. Our experiments indicate, therefore, that lactate serves as a regulatory signal by which macrophage-like accessory cells enhance helper-T-cell functions. Lactate is apparently not the only mediator of accessory cell function since plateau levels of TCGF production were markedly lower with lactate than with splenic accessory cells; but L-lactate was found also to determine the magnitude of T-cell-mediated immune responses in vivo and in cultures of unfractionated lymphocyte populations. The production of interferon in accessory cell-depleted and concanavalin A-treated T-cell cultures, however, was not significantly affected by lactate. Concanavalin A-stimulated splenic T-cell populations were found to consume glucose rapidly and to release lactate into the supernatant. This indicates that the cells contain more lactate and pyruvate than they can utilize by their respiratory metabolism. The administration of external lactate or pyruvate was found to inhibit the utilization of glucose by the mitogenically stimulated T cells.
    [Abstract] [Full Text] [Related] [New Search]