These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insights into the Interaction between Immobilized Biocatalysts and Metal-Organic Frameworks: A Case Study of PCN-333. Author: Yang W, Liang W, O'Dell LA, Toop HD, Maddigan N, Zhang X, Kochubei A, Doonan CJ, Jiang Y, Huang J. Journal: JACS Au; 2021 Dec 27; 1(12):2172-2181. PubMed ID: 34977888. Abstract: The immobilization of enzymes in metal-organic frameworks (MOFs) with preserved biofunctionality paves a promising way to solve problems regarding the stability and reusability of enzymes. However, the rational design of MOF-based biocomposites remains a considerable challenge as very little is known about the state of the enzyme, the MOF support, and their host-guest interactions upon immobilization. In this study, we elucidate the detailed host-guest interaction for MOF immobilized enzymes in the biointerface. Two enzymes with different sizes, lipase and insulin, have been immobilized in a mesoporous PCN-333(Al) MOF. The dynamic changes of local structures of the MOF host and enzyme guests have been experimentally revealed for the existence of the confinement effect to enzymes and van der Waals interaction in the biointerface between the aluminum oxo-cluster of the PCN-333 and the -NH2 species of enzymes. This kind of host-guest interaction renders the immobilization of enzymes in PCN-333 with high affinity and highly preserved enzymatic bioactivity.[Abstract] [Full Text] [Related] [New Search]