These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Occurrence, spatial distribution, and main source identification of ten bisphenol analogues in the dry season of the Pearl River, South China. Author: Wang H, Tang Z, Liu ZH, Zeng F, Zhang J, Dang Z. Journal: Environ Sci Pollut Res Int; 2022 Apr; 29(18):27352-27365. PubMed ID: 34978033. Abstract: Bisphenol analogues (BPs) including bisphenol a (BPA) have been broadly utilized as industrial feedstocks and unavoidably discharged into water bodies. However, there is little published data on the occurrence, distribution, and environmental risks of other BPs in surface water. In this study, ten BPs besides BPA were analyzed in surface water from the Pearl River, South China. Among these detected BPs, BPA, bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol S (BPS) were the most frequently detected compounds. The median concentrations of the measured BPs were ranked in the order of BPA (34.9 ng/L) > BPS (24.8 ng/L) > BPAF (10.1 ng/L) > bisphenol F (BPF) (9.0 ng/L) > bisphenol B (BPB) (7.6 ng/L) > bisphenol C (BPC) (1.2 ng/L). Among them, BPA and BPS were predominant BPs, contributing 68% of the total ten BPs in surface water of the Pearl River. These results demonstrated that BPA and BPS were the most extensively utilized and manufactured BPs in this region. The source analysis of BPs suggested that the BPs may be originated from domestic wastewater, wastewater treatment plant (WWTP) effluent, and the leaching of microplastic in surface water of the Pearl River. The calculated BP-derived estrogenic activity exhibited low to medium risks in surface water, but their combined estrogenic effects with other endocrine disrupting compounds should not be ignored.[Abstract] [Full Text] [Related] [New Search]