These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assessing the influence of urban greenness and green stormwater infrastructure on hydrology from satellite remote sensing. Author: Conley G, McDonald RI, Nodine T, Chapman T, Holland C, Hawkins C, Beck N. Journal: Sci Total Environ; 2022 Apr 15; 817():152723. PubMed ID: 34979231. Abstract: Green stormwater infrastructure (GSI), which includes features like rain gardens, constructed wetlands, or urban tree canopy, is now widely recognized as a means to reduce urban runoff impacts and meet municipal water quality permit requirements. Many co-benefits of GSI are related to increased vegetative cover, which can be measured with satellite imagery via spectral indices such as the Normalized Difference Vegetation Index (NDVI). In urban landscapes, there remain critical gaps in understanding how urban greenness and GSI influence hydrology. Here, we quantify these relationships to assess the feasibility of tracking the effectiveness of urban greening for improving downstream hydrologic conditions. We combined hydrologic data from the United States Geological Survey (USGS) gauges with an NDVI time series (1985-2019) derived from Landsat satellite imagery, and synthesis of GSI implementation data from a set of 372 urbanized watersheds across the United States. We used a multivariate panel modeling approach to account for spatial and time varying factors (rainfall, temperature, urban cover expansion) in an effort to isolate the relationships of interest. After accounting for expansion of urban boundaries, only 32 watersheds (9%) showed significant greenness trends, a majority of which were reductions. Urban greenness had significant influences on downstream flow responses, so that on average, a 10% greenness increase showed a corresponding reduction of total flow (-3.8%), flow variance (-7.7%), peak flows (-4.7%), high flows (-7.6%), flashiness (-2.2%), and high flow frequency (-1.5%); and a corresponding increase in baseflow (4.3%). For a subset of these watersheds for which GSI data were available (n = 48), the level of GSI implementation showed a significant, but weak influence on urban greenness with a 20% increase in BMP density corresponding to a greenness increase of 0.9%. The study results may support valuation and verification of GSI co-benefits in urbanized landscapes at the watershed scale.[Abstract] [Full Text] [Related] [New Search]