These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section. Author: Wang J, Zhou M, Xie Z, Hao X, Tang S, Wang J, Zou Z, Ji G. Journal: J Colloid Interface Sci; 2022 Apr 15; 612():146-155. PubMed ID: 34992015. Abstract: Ultra-thin microwave absorbers have been urgently demanded for electromagnetic applications in recent years. Herein, porous carbon with a "flower cluster" microstructure was synthesized from biomass waste (mango seeds) by a facile activation and carbonization method. The novel structure reduced the density and also improved the impedance matching, dipole polarization, and provided many carbon matrix-air interfaces for interfacial polarization, resulting in superior microwave absorption performance. At an ultra-thin thickness of 1.5 mm, extraordinary microwave absorption was achieved, with a reflection loss (RL) of -42 dB. The effective absorption bandwidth reached 4.2 GHz. The RL can be further improved to -68.4 dB by adjusting the amount of activator to manipulate the structure of porous carbon. In addition, from the simulated radar scattering results, the maximum reduction in the radar cross-section (RCS) reached 30.4 dBm2, which can greatly reduce the probability of equipment being detected by radar. This work provides a low-cost and high-performance microwave absorber for electromagnetic stealth technologies.[Abstract] [Full Text] [Related] [New Search]