These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pilot-scale demonstration of a novel process integrating Partial Nitritation with simultaneous Anammox, Denitrification and Sludge Fermentation (PN + ADSF) for nitrogen removal and sludge reduction. Author: Wang B, Qiao X, Hou F, Liu T, Pang H, Guo Y, Guo J, Peng Y. Journal: Sci Total Environ; 2022 Apr 01; 815():152835. PubMed ID: 34998749. Abstract: Anammox process is a cost-effective solution for nitrogen removal, whereas unsatisfactory effluent with nitrate accumulation is usually achieved in treating domestic sewage, owning to the unwanted prevalence of nitrite-oxidizing bacteria (NOB) and the intrinsic nitrate production by anammox bacteria. Herein, a pilot-scale system integrating Partial Nitritation and simultaneous Anammox, Denitrification and Sludge Fermentation (PN + ADSF) process was developed to treat real municipal wastewater. In this process, PN was accomplished in a sequencing batch reactor (SBR) using the strategy of intermittent hydroxylamine addition, while ADSF coupling anammox and heterotrophic denitrification was conducted in an up-flow anaerobic sludge blanket reactor (UASB) to further remove nitrogen. The pilot-scale system achieved total inorganic nitrogen (TIN) concentrations of 10.0 mg N/L in effluent and sludge reduction efficiency of 42.3% simultaneously. The characterization on microbial communities revealed that Candidatus Kuenenia and Thauera were the dominant functional bacteria for anammox and denitrification, respectively. Supported by the slow-release carbon sources from sludge fermentation, heterotrophic denitrification contributed to about 28% of nitrogen removed from the UASB, while anammox played a more important role in nitrogen removal. The pilot-scale demonstration confirmed that the PN + ADSF process is technically feasible for enhanced nitrogen removal and sludge reduction.[Abstract] [Full Text] [Related] [New Search]