These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Bacillus subtilis PriA Winged Helix Domain Is Critical for Surviving DNA Damage. Author: Matthews LA, Simmons LA. Journal: J Bacteriol; 2022 Mar 15; 204(3):e0053921. PubMed ID: 35007156. Abstract: DNA replication forks regularly encounter lesions or other impediments that result in a blockage to fork progression. PriA is one of the key proteins used by virtually all eubacteria to survive conditions that result in a blockage to replication fork movement. PriA directly binds stalled replication forks and initiates fork restart allowing for chromosomes to be fully duplicated under stressful conditions. We used a CRISPR-Cas gene editing approach to map PriA residues critical for surviving DNA damage induced by several antibiotics in B. subtilis. We find that the winged helix (WH) domain in B. subtilis PriA is critical for surviving DNA damage and participates in DNA binding. The important in vivo function of the WH domain mapped to distinct surfaces that were also conserved among several Gram-positive human pathogens. In addition, we identified an amino acid linker neighboring the WH domain that is greatly extended in B. subtilis due to an insertion. Shortening this linker induced a hypersensitive phenotype to DNA damage, suggesting that its extended length is critical for efficient replication fork restart in vivo. Because the WH domain is dispensable in E. coli PriA, our findings demonstrate an important difference in the contribution of the WH domain during fork restart in B. subtilis. Furthermore, with our results we suggest that this highly variable region in PriA could provide different functions across diverse bacterial organisms. IMPORTANCE PriA is an important protein found in virtually all bacteria that recognizes stalled replication forks orchestrating fork restart. PriA homologs contain a winged helix (WH) domain. The E. coli PriA WH domain is dispensable and functions in a fork restart pathway that is not conserved outside of E. coli and closely related proteobacteria. We analyzed the importance of the WH domain and an associated linker in B. subtilis and found that both are critical for surviving DNA damage. This function mapped to a small motif at the C-terminal end of the WH domain, which is also conserved in pathogenic bacteria. The motif was not required for DNA binding and therefore may perform a novel function in the replication fork restart pathway.[Abstract] [Full Text] [Related] [New Search]