These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A rotary multi-positioned cloth/paper hybrid microfluidic device for simultaneous fluorescence sensing of mercury and lead ions by using ion imprinted technologies. Author: Wang L, Li B, Wang J, Qi J, Li J, Ma J, Chen L. Journal: J Hazard Mater; 2022 Apr 15; 428():128165. PubMed ID: 35007967. Abstract: A novel rotary cloth/paper hybrid microfluidic analytical device (μCPAD) was proposed via the synergy of the fluorescence sensing cloth-based component and rotary paper-based microfluidic analytical device (μPAD) for simultaneous detection of mercury (Hg2+) and lead (Pb2+) ions. Fluorescence sensing cloth-based component was prepared by grafting quantum dots onto cotton cloth and then modifying with ion imprinted polymers (IIP). Because the cloth has good ductility and durability, it can bear strong oscillation during the fabrication of grafting quantum dots and IIP, and brings a lot of convenience to the production process. At the same time, because rotary μCPAD was stacked by three-layer papers with designed hydrophilic channels and hydrophobic barriers, it could realize simultaneous detection of Hg2+ and Pb2+ ions by rotating top layer counterclockwise or clockwise. The fluorescence signals were obtained through quantum dots' electron transfer fluorescence quenching effect with the limits of detection were 0.18 and 0.07 μg/L, respectively. This method successfully realized the transference of specific and sensitive fluorescence sensing materials (quantum dots) onto the microfluidic device to improve the portability and expanded applications. Moreover, the novel microfluidic device may have great potential in point-of-care testing of heavy metal ions in environmental monitoring fields.[Abstract] [Full Text] [Related] [New Search]