These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synergistic Strengthening of Mechanical Properties and Electromagnetic Interference Shielding Performance of Carbon Nanotubes (CNTs) Reinforced Magnesium Matrix Composites by CNTs Induced Laminated Structure.
    Author: Sun Z, Shi H, Hu X, Yan M, Wang X.
    Journal: Materials (Basel); 2021 Dec 31; 15(1):. PubMed ID: 35009446.
    Abstract:
    In this study, we reported a laminated CNTs/Mg composite fabricated by spray-deposition and subsequent hot-press sintering, which realized simultaneous enhancement effects on strength and electromagnetic interference (EMI) shielding effectiveness (SE) by the introduced CNTs and CNT induced laminated 'Mg-CNT-Mg' structure. It was found that the CNTs/Mg composite with 0.5 wt.% CNTs not only exhibited excellent strength-toughness combination but also achieved a high EMI SE of 58 dB. The CNTs increased the strength of the composites mainly by the thermal expansion mismatch strengthening and blocking dislocation movements. As for toughness enhancement, CNTs induced laminated structure redistributes the local strain effectively and alleviates the strain localization during the deformation process. Moreover, it could also hinder the crack propagation and cause crack deflection, which resulted in an increment of the required energy for the failure of CNTs/Mg composites. Surprisingly, because of the laminated structure induced by introducing CNTs, the composite also exhibited an outperforming EMI SE in the X band (8.2-12.4 GHz). The strong interactions between the laminated 'Mg-CNT-Mg' structure and the incident electromagnetic waves are responsible for the increased absorption of the electromagnetic radiation. The lightweight CNTs/Mg composite with outstanding mechanical properties and simultaneously increased EMI performance could be employed as shell materials for electronic packaging components or electromagnetic absorbers.
    [Abstract] [Full Text] [Related] [New Search]