These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of Dynamic Crosslinking on Crystallization, Structure and Mechanical Property of Ethylene-Octene Elastomer/EPDM Blends.
    Author: Wang YX, Wang CC, Shi Y, Liu LZ, Bai N, Song LF.
    Journal: Polymers (Basel); 2021 Dec 30; 14(1):. PubMed ID: 35012161.
    Abstract:
    The dynamic crosslinking method has been widely used to prepare rubber/plastic blends with thermoplastic properties, and the rubber phase is crosslinked in these blends. Both polyolefin elastomer (POE) and ethylene-propylene-diene monomer rubber (EPDM) can be crosslinked, which is different from usual dynamic crosslinking components. In this paper, dynamic crosslinked POE/EPDM blends were prepared. For POE/EPDM blends without dynamic crosslinking, EPDM can play a nucleation role, leading to POE crystallizing at a higher temperature. After dynamic crosslinking, the crosslinking points hinder the mobility of POE chains, resulting in smaller crystals, but having too many crosslinking points suppresses POE crystallization. Synchrotron radiation studies show that phase separation occurs and phase regions form in non-crosslinked blends. After crosslinking, crosslinking points connecting EPDM and part of POE chains, enabling more POE to enter the EPDM phase and thus weakening phase separation, indicates that dynamic crosslinking improves the compatibility of POE/EPDM, also evidenced by a lower β conversion temperature and higher α conversion temperature than neat POE from dynamic mechanical analysis. Moreover, crosslinking networks hinder the crystal fragmentation during stretching and provide higher strength, resulting in 8.3% higher tensile strength of a 10 wt% EPDM blend than neat POE and almost the same elongation at break. Though excessive crosslinking points offer higher strength, they weaken the elongation at break.
    [Abstract] [Full Text] [Related] [New Search]