These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Au Film-Au@Ag Core-Shell Nanoparticle Structured Surface-Enhanced Raman Spectroscopy Aptasensor for Accurate Ochratoxin A Detection.
    Author: Jing X, Chang L, Shi L, Liu X, Zhao Y, Zhang W.
    Journal: ACS Appl Bio Mater; 2020 Apr 20; 3(4):2385-2391. PubMed ID: 35025287.
    Abstract:
    As a powerful toxin that could cause fatal death, the detection of ochratoxin A (OTA) has gained much attention in the fields of environmental and food sciences. In this study, an internal standard (IS) aptasensor was synthesized through a facile and scalable method to enhance the sensitivity and quantativity of OTA detection. The substrates were formed through hybridization of modified aptamers on Au@Ag core-shell nanoparticles (NPs) and Au films at a silicon surface. Incorporated with 4-ATP and 4-NTP as an internal standard, OTA recognition of such aptamers could cause NP release and signal losses. Utilizing the strong peaks at 1078 and 1335 cm-1, which represent 4-ATP and 4-NTP, respectively, the intensity ratio of I1078/I1335 could delegate the OTA concentration in a ratiometric manner. Therefore, the highest ratio of I1078/I1335 represents the lowest concentration of OTA, and a lower ratio means a higher OTA concentration. Quantitatively, the high consistency for OTA detection was achieved through correction of signal losses by IS references with an R2 of 0.993 and RSD of 0.94%, and the OTA detection limit of 5 pM was achieved. Herein, such an IS aptasensor provides a reliable and scalable detection platform for various molecules in a continuous and high-throughput manner and holds great promise in future quantitative SERS measurements.
    [Abstract] [Full Text] [Related] [New Search]