These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Accelerating anammox nitrogen removal in low intensity ultrasound-assisted ASBBR: Performance optimization, EPS characterization and microbial community analysis. Author: Zhang W, Zhou X, Cao X, Li S. Journal: Sci Total Environ; 2022 Apr 15; 817():152989. PubMed ID: 35026268. Abstract: Efficient enrichment of slow-growing anammox species is essential for rapid start-up and stable operation of high-rate anammox reactors. Herein, a low intensity ultrasound (LIU) was introduced into anaerobic sequencing batch biofilm reactors (ASBBRs) to enhance anammox nitrogen removal from nitrogen-rich wastewater. Operation results demonstrated that the maximum total nitrogen (TN) removal efficiency of 91.5% were achieved under the optimal ultrasonic parameters (32.7 °C water temperature, 0.18 W/cm2 ultrasonic intensity and 25.7 min ultrasonication time). Moreover, significant increases of extracellular polymeric substances (EPS) components and contents were observed via the ultrasonication stimulation. A close correlation between nitrogen removal and shifts in transformation and intensity of spectrum peaks was also verified by three-dimensional excitation-emission matrix spectroscopy (3D-EEM) analysis. High-throughput sequencing revealed that the relative abundance of Candidatus Kuenenia as the key anammox consortium significantly increased after applying optimal ultrasonication condition. Furthermore, enhancement mechanisms and future prospect of the LIU-assisted anammox process was elucidated and discussed. This research provides a viable and promising acceleration strategy for anammox-based process in practice.[Abstract] [Full Text] [Related] [New Search]