These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Source-to-Target Automatic Rotating Estimation (STARE) - A publicly-available, blood-free quantification approach for PET tracers with irreversible kinetics: Theoretical framework and validation for [18F]FDG. Author: Bartlett EA, Ogden RT, Mann JJ, Zanderigo F. Journal: Neuroimage; 2022 Apr 01; 249():118901. PubMed ID: 35026425. Abstract: INTRODUCTION: Full quantification of positron emission tomography (PET) data requires an input function. This generally means arterial blood sampling, which is invasive, labor-intensive and burdensome. There is no current, standardized method to fully quantify PET radiotracers with irreversible kinetics in the absence of blood data. Here, we present Source-to-Target Automatic Rotating Estimation (STARE), a novel, data-driven approach to quantify the net influx rate (Ki) of irreversible PET radiotracers, that requires only individual-level PET data and no blood data. We validate STARE with human [18F]FDG PET scans and assess its performance using simulations. METHODS: STARE builds upon a source-to-target tissue model, where the tracer time activity curves (TACs) in multiple "target" regions are expressed at once as a function of a "source" region, based on the two-tissue irreversible compartment model, and separates target region Ki from source Ki by fitting the source-to-target model across all target regions simultaneously. To ensure identifiability, data-driven, subject-specific anchoring is used in the STARE minimization, which takes advantage of the PET signal in a vasculature cluster in the field of view (FOV) that is automatically extracted and partial volume-corrected. To avoid the need for any a priori determination of a single source region, each of the considered regions acts in turn as the source, and a final Ki is estimated in each region by averaging the estimates obtained in each source rotation. RESULTS: In a large dataset of human [18F]FDG scans (N = 69), STARE Ki estimates were correlated with corresponding arterial blood-based Ki estimates (r = 0.80), with an overall regression slope of 0.88, and were precisely estimated, as assessed by comparing STARE Ki estimates across several runs of the algorithm (coefficient of variation across runs=6.74 ± 2.48%). In simulations, STARE Ki estimates were largely robust to factors that influence the individualized anchoring used within its algorithm. CONCLUSION: Through simulations and application to [18F]FDG PET data, feasibility is demonstrated for STARE blood-free, data-driven quantification of Ki. Future work will include applying STARE to PET data obtained with a portable PET camera and to other irreversible radiotracers.[Abstract] [Full Text] [Related] [New Search]