These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A target-initiated autocatalytic 3D DNA nanomachine for high-efficiency amplified detection of MicroRNA.
    Author: Yang P, Chen H, Zhu Q, Chen Z, Yang Z, Yuan R, Li Y, Liang W.
    Journal: Talanta; 2022 Apr 01; 240():123219. PubMed ID: 35026639.
    Abstract:
    Considering the challenges of generating simple and efficient DNA (deoxyribonucleic acid) nanomachines for sensitive bioassays and the great potential of target-induced self-cycling catalytic systems, herein, a novel autocatalytic three-dimensional (3D) DNA nanomachine was constructed based on cross-catalytic hairpin assembly on gold nanoparticles (AuNPs) to generate self-powered efficient cyclic amplification. Typically, the DNA hairpins H1, H2, H3 and H4 were immobilized onto AuNPs first. In the presence of target microRNA-203a, the 3D DNA nanomachines were triggered to activate a series of CHA (catalytic hairpin assembly) reactions. Based on the rational design of the system, the products of the CHA 1 reaction were the trigger of the CHA 2 reaction, which could trigger the CHA 1 reaction in turn, generating an efficient self-powered CHA amplification strategy without adding fuel DNA strands or protein enzymes externally and producing high-efficiency fluorescence signal amplification. More importantly, the proposed autocatalytic 3D DNA nanomachines outperformed conventional 3D DNA nanomachines combined with the single-directional cyclic amplification strategy to maximize the amplification efficiency. This strategy not only achieves high-efficiency analysis of microRNAs (microribonucleic acids) in vitro and intracellularly but also provides a new pathway for highly processive DNA nanomachines, offering a new avenue for bioanalysis and early clinical diagnosis.
    [Abstract] [Full Text] [Related] [New Search]