These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Double-Protected Layers with Solid-Liquid Hybrid Electrolytes for Long-Cycle-Life Lithium Batteries. Author: Tang J, Wang L, Tian C, Chen C, Huang T, Zeng L, Yu A. Journal: ACS Appl Mater Interfaces; 2022 Jan 26; 14(3):4170-4178. PubMed ID: 35029962. Abstract: Lithium-ion batteries (LIBs) with liquid electrolytes (LEs) have problems such as electrolyte leakage, low safety profiles, and low energy density, which limit their further development. However, LIBs with solid electrolytes are safer with better energy and high-temperature performance. Thus, solid electrolyte system batteries have attracted widespread attention. However, due to the inherent rigidity of the LATP solid electrolyte, there is a high interface impedance at the LATP/electrode. In addition, the Ti element in LATP easily reacts with the Li metal. Here, we dripped an LE at the LATP/electrode interface (solid-liquid hybrid electrolytes) to reduce its interface impedance. A composite polymer electrolyte (CPE) protective film (containing PVDF, SN, and LiTFSI) was then cured in situ at the LATP/Li interface to avoid side reactions of LATP. The discharge specific capacity of the LiFePO4/LATP-12% LE-CPE/Li system is up to 150 mAh g-1, and the capacity retention rate is still 96% after 250 cycles. In addition, the NCM622/PVDF-LATP-12% LE/Li system has an initial reversible capacity of 170 mAh g-1. This study reports an approach that can protect solid electrolytes from lithium metal instability.[Abstract] [Full Text] [Related] [New Search]