These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Colorimetric assay for the detection of dopamine using bismuth ferrite oxide (Bi2Fe4O9) nanoparticles as an efficient peroxidase-mimic nanozyme.
    Author: Razavi M, Barras A, Ifires M, Swaidan A, Khoshkam M, Szunerits S, Kompany-Zareh M, Boukherroub R.
    Journal: J Colloid Interface Sci; 2022 May; 613():384-395. PubMed ID: 35042036.
    Abstract:
    This work describes the preparation of ternary bismuth ferrite oxide nanoparticles (Bi2Fe4O9 NPs) with an enzyme mimetic activity for dopamine (DA) qualitative and quantitative detection. Bi2Fe4O9 NPs were prepared using a facile, low cost, and one-pot hydrothermal treatment. The chemical composition, morphology, and optical properties of Bi2Fe4O9 nanozyme were characterized using different techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), dynamic light scattering (DLS), field-emission scanning electron microscopy (FESEM) imaging, FESEM-energy dispersive X-ray spectroscopy (EDS), UV-vis absorption, and fluorescence emission spectroscopy. Bi2Fe4O9 NPs were utilized to catalyze the oxidation of a typical chromogenic peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), to form the blue-colored oxidized product (oxTMB), in the presence of hydrogen peroxide (H2O2). All reactions occurred in acetate buffer solution (pH 3.5) to generate hydroxyl radicals (OH) and the kinetics were followed by UV-vis absorbance at 654 nm. The steady-state kinetic parameters were obtained from the Michaelis-Menten equation and exhibited a good catalytic efficiency of Bi2Fe4O9 NPs as enzyme mimetics. Michaelis-Menten constant (Km) values were estimated as 0.07 and 0.73 mM for TMB and H2O2, respectively. The presented method is efficient, rapid, cost-effective, and sensitive for the colorimetric detection of dopamine with a linear range (LR) from 0.15 to 50 μM and a detection limit (LOD) of 51 nM. The proposed colorimetric sensor was successfully applied for the detection of different concentrations of dopamine in spiked fetal bovine serum (FBS) and horse serum (HS) samples. It is anticipated that Bi2Fe4O9 nanozyme holds great potential in biomedical analysis and diagnostic applications of dopamine-related diseases.
    [Abstract] [Full Text] [Related] [New Search]