These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Utility of Quantitative Metrics From Dual-Layer Spectral-Detector CT for Differentiation of Pancreatic Neuroendocrine Tumor and Neuroendocrine Carcinoma.
    Author: Wang Y, Hu X, Shi S, Song C, Wang L, Yuan J, Lin Z, Cai H, Feng ST, Luo Y.
    Journal: AJR Am J Roentgenol; 2022 Jun; 218(6):999-1009. PubMed ID: 35043668.
    Abstract:
    BACKGROUND. The 2019 WHO classification of digestive system tumors separates neuroendocrine neoplasms (NENs) into neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs), which are considered to represent pathologically distinct entities warranting different management approaches. Dual-layer spectral-detector CT (DLCT) may aid their differentiation through specific material decomposition. OBJECTIVE. The purpose of this study was to assess the utility of quantitative metrics derived from DLCT for the differentiation of pancreatic NET and NEC. METHODS. This retrospective study included 104 patients (mean age, 51 ± 13 [SD] years; 52 women, 52 men) with pathologically confirmed NEN (89 NET, including 22 grade 1, 48 grade 2, and 19 grade 3; 15 NEC) who underwent multiphase DLCT within 15 days before biopsy or resection. Two radiologists independently placed ROIs to record tumor attenuation, iodine concentration (IC), and effective atomic number (Zeff) across phases and assessed qualitative features (composition, homogeneity, margins, calcifications, main pancreatic duct dilatation, vascular invasion, lymphadenopathy). Interobserver agreement was assessed. Mean and median values of both readers' measurements were obtained for quantitative measures; consensus was reached for qualitative features. NET and NEC were compared using multivariable regression analysis and ROC analysis. RESULTS. Interobserver agreement, expressed as intraclass correlation coefficients, ranged from 0.869 to 0.992 for quantitative metrics and, expressed as kappa coefficients, ranged from 0.723 to 0.816 for qualitative features. In multivariable analysis of qualitative and quantitative features, significant independent predictors of NEC (p < .05) were IC in the portal venous phase (median, 1.3 mg/mL for NEC vs 2.7 mg/mL for NET), Zeff in the portal venous phase (median, 8.1 vs 8.6), and attenuation in the portal venous phase (median, 78.2 vs 113.5 HU). AUC for predicting NEC was 0.897 for IC, 0.884 for Zeff, 0.921 for combination of IC and Zeff, and 0.855 for attenuation. Predicted probability based on a combination of IC and Zeff achieved sensitivity of 93.33% and specificity of 80.90% for predicting NEC. Significant independent predictors (p < .05) for differentiating grade 3 NET and NEC were IC (median, 2.0 vs 1.3 mg/mL; AUC = 0.789) and attenuation (mean, 90.3 vs 78.2 HU; AUC = 0.647), both measured in the portal venous phase. CONCLUSION. Incorporation of DLCT metrics improves differentiation of NET and NEC compared with conventional CT attenuation and qualitative features. CLINICAL IMPACT. DLCT may help select patients with pancreatic NENs for platinum-based chemotherapies.
    [Abstract] [Full Text] [Related] [New Search]