These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Improvement of Motion Artifacts in Brain MRI Using Deep Learning by Simulation Training Data].
    Author: Muro I, Shimizu S, Tsukamoto H.
    Journal: Nihon Hoshasen Gijutsu Gakkai Zasshi; 2022; 78(1):13-22. PubMed ID: 35046218.
    Abstract:
    PURPOSE: To test whether deep learning can be used to effectively reduce artifacts in MR images of the brain. METHODS: In this study, a large set of images with and without motion artifacts is needed for training. It is difficult to collect training data from clinical images because it requires a lot of effort and time. We have created motion artifact images of the brain by computer simulation. As an experimental study, we obtained original images for deep learning from 20 volunteers. These original images were used to create various images of different artifacts by computer simulation and these were used the input images for deep learning. The same method was used to create test images and these images were used to compare the structural similarity (SSIM) index and peak signal-to-noise ratio (PSNR) between the input images and output images using the three denoising methods. The network models used were U-shaped fully convolutional network (U-Net), denoising convolutional neural network (DnCNN) and wide inference network and 5 layers Residual learning and batch normalization (Win5RB). RESULTS: U-Net was the most effective model for reducing motion artifacts. The SSIM and PSNR were 0.978 and 32.5 dB. CONCLUSION: This is an effective method to reduce artifacts without degrading the image quality of brain MRI images.
    [Abstract] [Full Text] [Related] [New Search]