These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spontaneous CD4+ T Cell Activation and Differentiation in Lupus-Prone B6.Nba2 Mice Is IFNAR-Independent. Author: Keller EJ, Dvorina N, Jørgensen TN. Journal: Int J Mol Sci; 2022 Jan 14; 23(2):. PubMed ID: 35055071. Abstract: Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by dysregulated T and B lymphocytes. Type I interferons (IFN-I) have been shown to play important pathogenic roles in both SLE patients and mouse models of lupus. Recent studies have shown that B cell intrinsic responses to IFN-I are enough to drive B cell differentiation into autoantibody-secreting memory B cells and plasma cells, although lower levels of residual auto-reactive cells remain present. We speculated that IFN-I stimulation of T cells would similarly drive specific T-cell associated lupus phenotypes including the upregulation of T follicular helper cells and Th17, thereby affecting autoantibody production and the development of glomerulonephritis. Using the B6.Nba2 mouse model of lupus, we evaluated disease parameters in T cell specific IFN-I receptor (IFNAR)-deficient mice (cKO). Surprisingly, all measured CD4+ T cell abnormalities and associated intra-splenic cytokine levels (IFNγ, IL-6, IL-10, IL-17, IL-21) were unchanged and thus independent of IFN-I. In contrast B6.Nba2 cKO mice displayed reduced levels of effector CD8+ T cells and increased levels of Foxp3+ CD8+ regulatory T cells, suggesting that IFN-I induced signaling specifically affecting CD8+ T cells. These data suggest a role for both pathogenic and immunosuppressive CD8+ T cells in Nba2-driven autoimmunity, providing a model to further evaluate the role of these cell subsets during lupus-like disease development in vivo.[Abstract] [Full Text] [Related] [New Search]