These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Femtosecond-Laser-Ablation Dynamics in Silicon Revealed by Transient Reflectivity Change.
    Author: Feng T, Chen G, Han H, Qiao J.
    Journal: Micromachines (Basel); 2021 Dec 23; 13(1):. PubMed ID: 35056180.
    Abstract:
    The dynamics of ablation in monocrystalline silicon, from electron-hole plasma generation to material expansion, upon irradiation by a single femtosecond laser pulse (1030 nm, 300 fs pulse duration) at a wide range of fluences is investigated using a time-resolved microscopy technique. The reflectivity evolution obtained from dynamic images in combination with a theoretical Drude model and a Two-Temperature model provides new insights on material excitation and ablation process. For all fluences, the reflectivity increased to a temporary stable state after hundreds of femtoseconds. This behavior was predicted using a temperature-dependent refractive index in the Drude model. The increase in velocity of plasma generation with increasing fluence was theoretically predicted by the Two-Temperature model. Two ablation regimes at high fluences (>0.86 J/cm2) were identified through the measured transient reflectivity and ablation crater profile. The simulation shows that the fluence triggering the second ablation regime produces a boiling temperature (silicon, 2628 K).
    [Abstract] [Full Text] [Related] [New Search]