These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and Validation of Noncanonical RET Fusions in Non-Small-Cell Lung Cancer through DNA and RNA Sequencing. Author: Xiang C, Guo L, Zhao R, Teng H, Wang Y, Xiong L, Han Y. Journal: J Mol Diagn; 2022 Apr; 24(4):374-385. PubMed ID: 35063667. Abstract: RET fusion has emerged as a targetable driver in non-small-cell lung cancer. A comparative analysis on RET fusions at DNA [DNA sequencing (DNA-seq)] and RNA [RNA sequencing (RNA-seq)] levels was performed in this study. Archived tumor samples from 54 non-small-cell lung cancer patients with DNA-level noncanonical RET fusions were selected for RNA-seq. RNA-seq identified RET fusion transcripts in 41 of 44 samples passing quality control. In the subset of cases harboring RET 3'-end fusions and predicted to produce in-frame proteins (group A; n = 33), RNA-seq identified the same 3'-end fusions in 32 (96.9%). A total of 26 of 32 also had a reciprocal RET 5'-end fusion detected by DNA-seq that was not transcribed. In the subset with DNA-level out-of-frame RET fusions (group B; n = 9), RNA-seq identified in-frame RET fusion transcripts in 8 cases (88.9%). In the subset only identified with a RET 5'-end fusion by DNA-seq (group C; n = 2), RNA-seq detected the corresponding 3'-end fusion in one case. The discordant DNA- and RNA-level fusions observed in group B may be mediated by complex genomic rearrangement events and transcriptional or post-transcriptional processes. In conclusion, DNA-seq demonstrates a high concordance of 96.9% on detecting in-frame RET fusion, but shows a low concordance on detecting out-of-frame RET fusion and RET 5'-end fusion compared with RNA-seq.[Abstract] [Full Text] [Related] [New Search]