These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Crystal structures of EfeB and EfeO in a bacterial siderophore-independent iron transport system. Author: Nakatsuji S, Okumura K, Takase R, Watanabe D, Mikami B, Hashimoto W. Journal: Biochem Biophys Res Commun; 2022 Feb 26; 594():124-130. PubMed ID: 35081501. Abstract: EfeUOB is a siderophore-independent iron uptake mechanism in bacteria. EfeU, EfeO, and EfeB are a permease, an iron-binding or electron-transfer protein, and a peroxidase, respectively. A Gram-negative bacterium, Sphingomonas sp. strain A1, encodes EfeU, EfeO, EfeB together with alginate-binding protein Algp7, a truncated EfeO-like protein (EfeOII), in the genome. The typical EfeO (EfeOI) consists of N-terminal cupredoxin and C-terminal M75 peptidase domains. Here, we detail the structure and function of bacterial EfeB and EfeO. Crystal structures of strain A1 EfeB and Escherichia coli EfeOI were determined at 2.30 Å and 1.85 Å resolutions, respectively. A molecule of heme involved in oxidase activity was bound to the C-terminal Dyp peroxidase domain of EfeB. Two domains of EfeOI were connected by a short loop, and a zinc ion was bound to four residues, Glu156, Glu159, Asp173, and Glu255, in the C-terminal M75 peptidase domain. These residues formed tetrahedron geometry suitable for metal binding and are well conserved among various EfeO proteins including Algp7 (EfeOII), although the metal-binding site (HxxE) is proposed in the C-terminal M75 peptidase domain. This is the first report on structure of a typical EfeO with two domains, postulating a novel metal-binding motif "ExxE-//-D-//-E" in the EfeO C-terminal M75 peptidase domain.[Abstract] [Full Text] [Related] [New Search]