These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Novel Intelligent Approach to Lane-Change Behavior Prediction for Intelligent and Connected Vehicles. Author: Du L, Chen W, Ji J, Pei Z, Tong B, Zheng H. Journal: Comput Intell Neurosci; 2022; 2022():9516218. PubMed ID: 35082845. Abstract: The prediction of lane-change behavior is a challenging issue in intelligent and connected vehicles (ICVs), which can help vehicles predict in advance and change lanes safely. In this paper, a novel intelligent approach, which considering both the driving style-based lane-change environment and the driving trajectory-related parameters of the ICV and surrounding vehicles, is proposed to predict the lane-change behaviors for ICVs. By analyzing the characteristics of the lane-change behavior of the vehicle, a modified dataset for the prediction of lane-change behavior was established based on the Next-Generation Simulation (NGSIM) dataset, which is made up of real vehicle trajectories collected by camera. In the proposed approach, the hidden Markov model (HMM)-based model is designed to judge whether the current environment is suitable for lane change according to the driving environment parameters around the vehicle; then according to the driving state of the vehicle, a learning-based prediction-then-judgment model is proposed and designed to realize the prediction of the ICV's lane-change behavior. Experiments are implemented by using the modified dataset. From the experimental results, the lane-change probability value on the target lane in the truth of the lane-change behavior calculated by the designed HMM-based model is basically above 0.5, indicating that the model can make a more accurate judgment on the surrounding lane-change environment. The proposed learning-based prediction-then-judgment model has an accuracy of 99.32% for the prediction of lane-change behavior, and the accuracy of the lane-change detection algorithm in the model is 99.56%. The experimental results show that the proposed approach has a good performance in the prediction of lane-change behavior, which could effectively assist ICVs to change lanes safely.[Abstract] [Full Text] [Related] [New Search]