These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Monolayer gadolinium halides, GdX2 (X = F, Cl, Br): intrinsic ferrovalley materials with spontaneous spin and valley polarizations. Author: Sheng K, Yuan HK, Wang ZY. Journal: Phys Chem Chem Phys; 2022 Feb 09; 24(6):3865-3874. PubMed ID: 35088778. Abstract: Two-dimensional (2D) intrinsic ferrovalley semiconductors provide unprecedented opportunities to investigate valley physics as well as providing promising device applications due to their exceptional combination of spontaneous spin and valley polarizations. Here, we have predicted from first-principles calculations and Monte Carlo simulations that monolayers (MLs) GdX2 are such extremely rare excellent materials. Apart from their robust stabilities energetically, dynamically, thermally, and mechanically, these 2D materials are found to be semiconducting intrinsic ferromagnets where the magnetic coupling is ascribed to 5d-electron-mediated 4f-4f exchange interactions. Moreover, MLs GdX2 (X = F, Cl, Br) not only exhibit significant magnetic anisotropy energy of 351, 268, and 30 μeV per Gd, but also have a high Curie temperature of 300, 245, and 225 K, respectively. In particular, spontaneous valley polarization in three systems occurs due to the cooperative interplay between the spin-orbit coupling and magnetic exchange interactions, whose magnitude is as sizable as 55, 38, and 82 meV for MLs GdF2, GdCl2, and GdBr2, respectively. Under the action of an in-plane longitudinal electrical field, the valley-contrasting Berry curvatures arising from the broken space-inversion and time-reversal symmetries in MLs GdX2 could yield opposite transverse velocities of the carriers, giving rise to the occurrence of a spin-polarized anomalous valley Hall effect. Overall, these findings render 2D GdX2 a class of promising candidate materials for experimental studies and practical spintronics and valleytronics applications.[Abstract] [Full Text] [Related] [New Search]