These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spin-Polarized Nematic Order, Quantum Valley Hall States, and Field-Tunable Topological Transitions in Twisted Multilayer Graphene Systems.
    Author: Zhang S, Dai X, Liu J.
    Journal: Phys Rev Lett; 2022 Jan 14; 128(2):026403. PubMed ID: 35089764.
    Abstract:
    We theoretically study the correlated insulator states, quantum anomalous Hall (QAH) states, and field-induced topological transitions between different correlated states in twisted multilayer graphene systems. Taking twisted bilayer-monolayer graphene and twisted double-bilayer graphene as examples, we show that both systems stay in spin-polarized, C_{3z}-broken insulator states with zero Chern number at 1/2 filling of the flat bands under finite displacement fields. In some cases these spin-polarized, nematic insulator states are in the quantum valley Hall (QVH) phase by virtue of the nontrivial band topology of the systems. The spin-polarized insulator state is quasidegenerate with the valley polarized state if only the dominant intravalley Coulomb interaction is included. Such quasidegeneracy can be split by atomic on-site interactions such that the spin-polarized, nematic state become the unique ground state. Such a scenario applies to various twisted multilayer graphene systems at 1/2 filling, thus can be considered as a universal mechanism. Moreover, under vertical magnetic fields, the orbital Zeeman splittings and the field-induced change of charge density in twisted multilayer graphene systems would compete with the atomic Hubbard interactions, which can drive transitions from spin-polarized zero-Chern-number states to valley-polarized QAH states with small onset magnetic fields.
    [Abstract] [Full Text] [Related] [New Search]