These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth and physiological response of Kandelia obovata and Bruguiera sexangula seedlings to aluminum stress. Author: Ma L, Yang S. Journal: Environ Sci Pollut Res Int; 2022 Jun; 29(28):43251-43266. PubMed ID: 35091926. Abstract: The role of mangroves as a biogeochemical buffer for heavy metal pollutants in coastal wetlands has been demonstrated, but knowledge gaps still exist on the tolerant capacity of mangroves to aluminum (Al). This study assessed the growth and physiological response of viviparous mangroves Kandelia obovata and Bruguiera sexangula to Al stress. The two mangrove seedlings were treated with AlCl3 at concentrations of 0 (as control) to 100 mmol L-1, and the impact of Al on their growth and antioxidant parameters were determined. Additionally, the accumulation and translocation of metal elements were estimated in B. sexangula seedlings under relative long-term Al stress. K. obovata appeared to survive with a tolerance potential of 10 mmol L-1 AlCl3, whereas B. sexangula had a higher tolerant ability of 50 mmol L-1 AlCl3. Both root elongation and seedling growth were inhibited by Al stress. The exposure to 25-100 mmol L-1 AlCl3 induced increases in membrane lipid peroxidation and osmoprotectant molecule (proline) in mangrove seedlings. Both mangrove seedlings revealed significant changes in antioxidant enzyme activities that were attributed to Al stress-induced oxidative damages. The activities of superoxide dismutase, catalase, peroxidase, and/or ascorbate peroxidase were differently impacted by the treatment time (7 days for short term versus 60 days for long term) and AlCl3 concentrations in K. obovata and B. sexangula seedlings. For B. sexangula seedlings, Al accumulation was in an order root > leaf > stem, whereas the translocation of metal elements in the aboveground tissues (leaf and stem) was differently impacted by Al stress. In conclusion, this study provides insights into different Al-tolerant abilities operated in two mangrove species that are widespread in coastal wetlands of China.[Abstract] [Full Text] [Related] [New Search]