These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitrate concentration analysis and prediction in a shallow aquifer in central-eastern Tunisia using artificial neural network and time series modelling. Author: El Amri A, M'nassri S, Nasri N, Nsir H, Majdoub R. Journal: Environ Sci Pollut Res Int; 2022 Jun; 29(28):43300-43318. PubMed ID: 35091932. Abstract: Agricultural activities have become a major source of groundwater nitrate contamination. In this context, this study aims to analyse nitrate concentrations in a shallow aquifer of Mahdia-Kssour Essef in central-eastern Tunisia, identify the assignable sources, and predict the future levels using artificial neural network (ANN) and autoregressive integrated moving average (ARIMA) models. The results showed that nitrate concentrations measured in 21 pumping wells across the plain ranged from 17 to 521 mg L-1. A total of 67% of the monitoring points greatly exceed the standard guideline value of 50 mg L-1. The main relevant anthropogenic and natural factors, such as soil texture, land use, fertilizers application rates, livestock waste disposal, and groundwater table, are positively correlated with groundwater nitrate concentration. The ANN model showed good fitting between measured and simulated results with coefficient of determination (R2), root-mean-square error (RMSE), and mean absolute error (MAE) values of 0.88, 53.95, and 39.64, respectively. The ARIMA applied on annual average nitrate concentrations from 1998 to 2017 revealed that the best fitted model (p, d, q) is (1, 2, 1). The R2 value is approximately 0.36, and the Theil inequality coefficient and bias proportion values are small and close to zero. These results proved the ARIMA model's adequacy in forecasting annual average nitrate concentrations of 116 mg L-1 in 2025. These findings may be useful in making groundwater management decisions, particularly in rural and semi-arid areas, and the proposed ARIMA model could be used as a managed tool to monitor and reduce the nitrate intrusion into groundwater.[Abstract] [Full Text] [Related] [New Search]