These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ErbB2 promotes breast cancer metastatic potential via HSF1/LDHA axis-mediated glycolysis.
    Author: He L, Lv S, Ma X, Jiang S, Zhou F, Zhang Y, Yu R, Zhao Y.
    Journal: Med Oncol; 2022 Jan 29; 39(4):45. PubMed ID: 35092510.
    Abstract:
    ErbB2 is overexpressed in approximately 25% of breast cancer cases and promotes metastatic potential. We previously reported that ErbB2 promoted glycolysis via heat shock factor 1 (HSF1)/lactate dehydrogenase A (LDHA) axis and ErbB2-mediated glycolysis was required for the growth of breast cancer cells. However, the importance of HSF1/LDHA axis-mediated glycolysis in ErbB2-enhanced metastatic potential remains to be elucidated. In this study, we investigated the effect of HSF1/LDHA axis-mediated glycolysis on migration and invasion in breast cancer cells. Firstly, we demonstrated that ErbB2-mediated migration and invasion were dependent on glycolysis in breast cancer cells. Secondly, we found that HSF1/LDHA axis played an important role in glycolysis, which contributed to ErbB2-enhanced migration and invasion. Finally, we showed that ErbB2 was positively correlated with HSF1/LDHA axis in invasive breast cancer patients via GEO analysis. Taken together, ErbB2 promoted metastatic potential of breast cancer cells via HSF1/LDHA axis-mediated glycolysis. And our findings indicated that targeting HSF1/LDHA axis may be a promising strategy to treat ErbB2-overexpressing breast cancer patients.
    [Abstract] [Full Text] [Related] [New Search]