These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Author: Edwards DJ, Forrest G, Cortes M, Weightman MM, Sadowsky C, Chang SH, Furman K, Bialek A, Prokup S, Carlow J, VanHiel L, Kemp L, Musick D, Campo M, Jayaraman A. Journal: Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007. Abstract: STUDY DESIGN: Clinical trial. OBJECTIVE: To demonstrate that a 12-week exoskeleton-based robotic gait training regimen can lead to a clinically meaningful improvement in independent gait speed, in community-dwelling participants with chronic incomplete spinal cord injury (iSCI). SETTING: Outpatient rehabilitation or research institute. METHODS: Multi-site (United States), randomized, controlled trial, comparing exoskeleton gait training (12 weeks, 36 sessions) with standard gait training or no gait training (2:2:1 randomization) in chronic iSCI (>1 year post injury, AIS-C, and D), with residual stepping ability. The primary outcome measure was change in robot-independent gait speed (10-meter walk test, 10MWT) post 12-week intervention. Secondary outcomes included: Timed-Up-and-Go (TUG), 6-min walk test (6MWT), Walking Index for Spinal Cord Injury (WISCI-II) (assistance and devices), and treating therapist NASA-Task Load Index. RESULTS: Twenty-five participants completed the assessments and training as assigned (9 Ekso, 10 Active Control, 6 Passive Control). Mean change in gait speed at the primary endpoint was not statistically significant. The proportion of participants with improvement in clinical ambulation category from home to community speed post-intervention was greatest in the Ekso group (>1/2 Ekso, 1/3 Active Control, 0 Passive Control, p < 0.05). Improvements in secondary outcome measures were not significant. CONCLUSIONS: Twelve weeks of exoskeleton robotic training in chronic SCI participants with independent stepping ability at baseline can improve clinical ambulatory status. Improvements in raw gait speed were not statistically significant at the group level, which may guide future trials for participant inclusion criteria. While generally safe and tolerable, larger gains in ambulation might be associated with higher risk for non-serious adverse events.[Abstract] [Full Text] [Related] [New Search]