These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dual-Type Carbon Confinement Strategy: Improving the Stability of CoTe2 Nanocrystals for Sodium-Ion Batteries with a Long Lifespan. Author: Zhao W, Zhang W, Lei Y, Wang L, Wang G, Wu J, Fan W, Huang S. Journal: ACS Appl Mater Interfaces; 2022 Feb 09; 14(5):6801-6809. PubMed ID: 35099923. Abstract: Sodium-ion batteries have great potential to become large-scale energy storage devices due to their abundant and low-cost resources. However, the lack of anode and cathode materials with both high energy density and long-term cycling performance significantly affects their commercial applications. In this work, uniform CoTe2 nanoparticles are generated from the tellurization of Co nanoparticles, which were coated with polyvinylpyrrolidone in a three-dimensional (3D) porous carbon matrix (CoTe2@3DPNC). Finally, a dual-type carbon confinement structure is formed after tellurization during which citric acid is adopted as the source of the inner carbon scaffold. The hierarchical carbon matrix not only builds a robust and fast ion/electronic conductive 3D architecture but also mitigates the volume expansion and aggregation of CoTe2 during sodium insertion/extraction. Remarkably, the CoTe2@3DPNC electrode displays a high reversible capacity (216.5 mAh g-1/627.9 mAh cm-3 at 0.2 A g-1 after 200 cycles) and outstanding long-term cycling performance (118.1 mAh g-1/342.5 mAh cm-3 even at 5.0 A g-1 after 2500 cycles). Kinetics tests and capacitance calculations clearly reveal a battery-capacitive dual-model Na-storage mechanism. Furthermore, ex situ XRD/SEM/TEM demonstrate superior stability during sodium insertion/extraction. This work provides a valuable strategy for the rational structural design of long-life electrodes for advanced rechargeable batteries.[Abstract] [Full Text] [Related] [New Search]