These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TGF-β1 inhibits human trophoblast cell invasion by upregulating kisspeptin expression through ERK1/2 but not SMAD signaling pathway. Author: Fang L, Yan Y, Gao Y, Wu Z, Wang Z, Yang S, Cheng JC, Sun YP. Journal: Reprod Biol Endocrinol; 2022 Jan 31; 20(1):22. PubMed ID: 35101033. Abstract: BACKGROUND: Tightly regulation of extravillous cytotrophoblast (EVT) cell invasion is critical for the placentation and establishment of a successful pregnancy. Insufficient EVT cell invasion leads to the development of preeclampsia (PE) which is a leading cause of maternal and perinatal mortality and morbidity. Transforming growth factor-beta1 (TGF-β1) and kisspeptin are expressed in the human placenta and have been shown to inhibit EVT cell invasion. Kisspeptin is a downstream target of TGF-β1 in human breast cancer cells. However, whether kisspeptin is regulated by TGF-β1 and mediates TGF-β1-suppressed human EVT cell invasion remains unclear. METHODS: The effect of TGF-β1 on kisspeptin expression and the underlying mechanisms were explored by a series of in vitro experiments in a human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells. Serum levels of TGF-β1 and kisspeptin in patients with or without PE were measured by ELISA. RESULTS: TGF-β1 upregulates kisspeptin expression in HTR-8/SVneo cells and primary cultures of human EVT cells. Using pharmacological inhibitor and siRNA, we demonstrate that the stimulatory effect of TGF-β1 on kisspeptin expression is mediated via the ALK5 receptor. Treatment with TGF-β1 activates SMAD2/3 canonical pathways as well as ERK1/2 and PI3K/AKT non-canonical pathways. However, only inhibition of ERK1/2 activation attenuates the stimulatory effect of TGF-β1 on kisspeptin expression. In addition, siRNA-mediated knockdown of kisspeptin attenuated TGF-β1-suppressed EVT cell invasion. Moreover, we report that serum levels of TGF-β1 and kisspeptin are significantly upregulated in patients with PE. CONCLUSIONS: By illustrating the potential physiological role of TGF-β1 in the regulation of kisspeptin expression, our results may serve to improve current strategies used to treat placental diseases.[Abstract] [Full Text] [Related] [New Search]