These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proton Conductive Lanthanide-Based Metal-Organic Frameworks: Synthesis Strategies, Structural Features, and Recent Progress. Author: Ren HM, Wang HW, Jiang YF, Tao ZX, Mu CY, Li G. Journal: Top Curr Chem (Cham); 2022 Feb 04; 380(2):9. PubMed ID: 35119539. Abstract: In the fields of proton exchange membrane fuel cells as well as impedance recognition, molecular sieve, and biochemistry, the development of proton conductive materials is essential. The design and preparation of the next generation of proton conductive materials-crystalline metal-organic framework (MOF) materials with high proton conductivity and excellent water stability-are facing great challenges. Due to the large radius and high positive charge of lanthanides, they often interact with organic ligands to exhibit high coordination numbers and flexible coordination configurations, resulting in the higher stability of lanthanide-based MOFs (Ln-MOFs) than their transition metal analogues, especially regarding water stability. Therefore, Ln-MOFs have attracted considerable attention. This review offers a view of the latest progress of proton conductive Ln-MOFs, including synthesis strategy, structural characteristics, and advantages, proton conductivity, proton conductive mechanism, and applications. More importantly, by discussing structure-property relationships, we searched for and analyzed design techniques and directions of development of Ln-MOFs in the future. The latest progress of synthesis strategy, structural characteristics, proton conductive properties and mechanism and applications on Ln-MOFs. Ln-MOFS Lanthanide-based MOFs, MOF metal-organic framework, PEMFC proton exchange membrane fuel cells.[Abstract] [Full Text] [Related] [New Search]