These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of microRNA-448 suppresses CD4+ T cell inflammatory activation via up-regulating suppressor of cytokine signaling 5 in systemic lupus erythematosus. Author: Zhang J, Guo Y, Sun Y, Chang L, Wang X. Journal: Biochem Biophys Res Commun; 2022 Mar 12; 596():88-96. PubMed ID: 35121374. Abstract: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. MicroRNA-448 (miR-448) has a pro-inflammatory effect in various inflammation-related diseases and is up-regulated in serum of patients with SLE. However, the role of miR-448 in SLE development remains elusive. In our study, we found high expression of miR-448 in peripheral blood mononuclear cells (PBMCs) of SLE patients, and miR-448 level was positively associated with disease severity. Besides, miR-448 level was up-regulated during the growth of MRL/lpr mice. To investigate the function of miR-448 in SLE, we subjected 8-week MRL/lpr mice to injection of lentivirus (LV)-mediated anti-miR-448. Inhibition of miR-448 reduced serum IgG and anti-dsDNA IgG contents, 24 h urine protein and blood urea nitrogen (BUN) levels, increased complement C3 concentration, and ameliorated splenomegaly and lymphadenectasis in MRL/lpr mice. MiR-448 inhibition alleviated renal inflammatory infiltration and glycogen deposition. Moreover, miR-448 inhibition promoted Treg cell activation and inhibited Th17 cell proportion in naïve CD4+ T cells from spleens, along with elevated interleukin (IL)-10 and reduced IL-17A levels. In vitro, miR-448 inhibition diminished CD4+ T cell polarization toward Th17 cells under Th17-polarizing conditions. Further, luciferase reporter assay revealed that miR-448 binds to the 3'UTR of suppressor of cytokine signaling 5 (SOCS5). SOCS5 expression was down-regulated in the spleens of MRL/lpr mice and induced Th17 cells. SOCS5 deficiency partially reversed the role of miR-448 in Th17 differentiation and IL-17A expression in SLE. Taken together, inhibition of miR-448 impedes Th17 cell activation and tissue damages via targeting SOCS5 in SLE.[Abstract] [Full Text] [Related] [New Search]