These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prelimbic cortex miR-34a contributes to (2R,6R)-hydroxynorketamine-mediated antidepressant-relevant actions.
    Author: Ye L, Xiao X, Xu Y, Zheng C, Chen S, Luo T, Li Z, Du Y, Yuan Y, Li L, Liu B, Qin W, Chou D.
    Journal: Neuropharmacology; 2022 May 01; 208():108984. PubMed ID: 35131296.
    Abstract:
    The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has recently been suggested to exert fast-acting antidepressant-relevant actions and was proposed as an ideal next-generation antidepressant. However, the microRNA-mediated mechanism underlying its effects is still unknown. In the present study, we investigated the role of miR-34a in the prelimbic (PL) cortex during (2R,6R)-HNK-mediated antidepressant-like effects. Male (8-10 weeks old) C57BL/6J mice and primary hippocampal cultured neurons were employed. The tests of forced swimming, tail suspension, sucrose preference, and female urine sniffing were used as indices of depressive-like behaviors. (2R,6R)-HNK enhanced miR-34a levels in a time-dependent manner at 1, 24 h, and 3 days in vitro, in a time-dependent manner at 1 and 24 h, and in a dose-dependent manner at 10 and 30 mg/kg in PL. Pretreatment with NBQX or verapamil blocked (2R,6R)-HNK-enhanced miR-34a expression and NBQX pretreatment blocked AMPA-elevated miR-34a levels in vitro. AAV-miR-34a in PL produced antidepression-behavioral effects and rescued stress-induced depressive-like behaviors. Moreover, PL AAV-miR-34a increased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) and potentiated evoked excitatory postsynaptic currents (EPSCs). Slices incubated with miR-34a mimic acutely enhanced the frequency and amplitude of mEPSCs in the PL. Intra-PL application of miR-34a rapidly produced antidepression-like effects and reversed stress-evoked depressive-like behaviors. Furthermore, intra-PL application of anti-miR-34a attenuated both systemic and local (2R,6R)-HNK-mediated antidepressant-like actions. Collectively, these results suggest that miR-34a in PL plays an antidepression-like role and contributes to the fast-acting antidepressant-relevant actions of (2R,6R)-HNK. The present study provides evidence for a miR-34a-dependent mechanism underlying the fast-acting antidepressant-like actions of (2R,6R)-HNK, indicating a novel role of PL miR-34a in antidepression.
    [Abstract] [Full Text] [Related] [New Search]