These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Systemic Stereoselectivity Study of Fenobucarb: Environmental Behaviors in Greenhouse Vegetables, Fruits, Earthworms, and Soils and Its Cytotoxicity.
    Author: Ma S, Zhang H, Li F, Zhao P, Yin S, Sun J, Xu J, Wang Z, Xu X, Di X.
    Journal: J Agric Food Chem; 2022 Feb 23; 70(7):2127-2135. PubMed ID: 35138837.
    Abstract:
    Fenobucarb (2-sec-butylphenyl methylcarbamate, BPMC) is a potent carbamate pesticide with high insecticidal activity. In this study, the enantioselective accumulation of BPMC in earthworms (Eisenia foetida) and dissipation in cabbage, Chinese cabbage, strawberry, and soils were investigated. The samples were prepared using the QuEChERS method and analyzed using fast and sensitive chiral high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) analysis. The stereoselective accumulation of BPMC enantiomers revealed that S-(+)-BPMC was preferentially accumulated in earthworms rather than its antipode. However, the dissipation studies showed that S-(+)-BPMC degraded faster than the R-(-)-isomer in cabbage, Chinese cabbage, strawberry, and soils. Furthermore, the cytotoxic effect of BPMC enantiomers toward PC12 and N9 neuronal, A549 lung cancer, and MRC5 lung fibroblast cell lines was evaluated using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Compared with R-(-)- and rac-isomers, S-(+)-BPMC exhibited lower cytotoxicity in neuronal cells and a weaker proliferating effect on lung cancer and lung fibroblast cells. Altogether, the findings suggest the use of the pure S-(+)-enantiomer in agricultural management rather than the use of the racemate or the R-(-)-isomer, which might reduce the environmental risk.
    [Abstract] [Full Text] [Related] [New Search]