These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Salicylic Acid and Phytoalexin Induction by a Bacterium that Causes Halo Blight in Beans. Author: Cooper B, Campbell KB, Garrett WM. Journal: Phytopathology; 2022 Aug; 112(8):1766-1775. PubMed ID: 35147446. Abstract: Pseudomonas savastanoi pv. phaseolicola is a bacterium that causes halo blight in beans. Different varieties of beans have hypersensitive resistance to specific races of P. savastanoi pv. phaseolicola. During hypersensitive resistance, also known as effector-triggered immunity (ETI), beans produce hormones that signal molecular processes to produce phytoalexins that are presumed to be antibiotic to bacteria. To shed light on hormone and phytoalexin production during immunity, we inoculated beans with virulent and avirulent races of P. savastanoi pv. phaseolicola. We then used mass spectrometry to measure the accumulation of salicylic acid (SA), the primary hormone that controls immunity in plants, and other hormones including jasmonate, methyljasmonate, indole-3-acetic acid, abscisic acid, cytokinin, gibberellic acid, and 1-aminocyclopropane-1-carboxylic acid. SA, but no other examined hormone, consistently increased at sites of infection to greater levels in resistant beans compared with susceptible beans at 4 days after inoculation. We then monitored 10 candidate bean phytoalexins. Daidzein, genistein, kievitone, phaseollin, phaseollidin, coumestrol, and resveratrol substantially increased alongside SA in resistant beans but not in susceptible beans. In vitro culture assays revealed that SA, daidzein, genistein, coumestrol, and resveratrol inhibited P. savastanoi pv. phaseolicola race 5 culture growth. These results demonstrate that these phytoalexins may be regulated by SA and work with SA during ETI to restrict bacterial replication. This is the first report of antibiotic activity for daidzein, genistein, and resveratrol to P. savastanoi pv. phaseolicola. These results improve our understanding of the mechanistic output of ETI toward this bacterial pathogen of beans.[Abstract] [Full Text] [Related] [New Search]