These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Crystal structures of apo- and FAD-bound human peroxisomal acyl-CoA oxidase provide mechanistic basis explaining clinical observations. Author: Sonani RR, Blat A, Dubin G. Journal: Int J Biol Macromol; 2022 Apr 30; 205():203-210. PubMed ID: 35149097. Abstract: Peroxisomal acyl-CoA oxidase 1a (ACOX1a) catalyzes the first and rate-limiting step of fatty acid oxidation, the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The dysfunction of human ACOX1a (hACOX1a) leads to deterioration of the nervous system manifesting in myeloneuropathy, hypotonia and convulsions. Crystal structures of hACOX1a in apo- and cofactor (FAD)-bound forms were solved at 2.00 and 2.09 Å resolution, respectively. hACOX1a exists as a homo-dimer with solvation free energy gain (ΔGo) of -44.7 kcal mol-1. Two FAD molecules bind at the interface of protein monomers completing the active sites. The substrate binding cleft of hACOX1a is wider compared to human mitochondrial very-long chain specific acyl-CoA dehydrogenase. Mutations (p.G178C, p.M278V and p.N237S) reported to cause dysfunctionality of hACOX1a are analyzed on its 3D-structure to understand structure-function related perturbations and explain the associated phenotypes.[Abstract] [Full Text] [Related] [New Search]