These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Novel CT-Based Radiomics Features Analysis for Identification and Severity Staging of COPD.
    Author: Li Z, Liu L, Zhang Z, Yang X, Li X, Gao Y, Huang K.
    Journal: Acad Radiol; 2022 May; 29(5):663-673. PubMed ID: 35151548.
    Abstract:
    RATIONALE AND OBJECTIVES: To evaluate the role of radiomics based on Chest Computed Tomography (CT) in the identification and severity staging of chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS: This retrospective analysis included 322 participants (249 COPD patients and 73 control subjects). In total, 1395 chest CT-based radiomics features were extracted from each participant's CT images. Three feature selection methods, including variance threshold, Select K Best method, and least absolute shrinkage and selection operator (LASSO), and two classification methods, including support vector machine (SVM) and logistic regression (LR), were used as identification and severity classification of COPD. Performance was compared by AUC, accuracy, sensitivity, specificity, precision, and F1-score. RESULTS: 38 and 10 features were selected to construct radiomics models to detect and stage COPD, respectively. For COPD identification, SVM classifier achieved AUCs of 0.992 and 0.970, while LR classifier achieved AUCs of 0.993 and 0.972 in the training set and test set, respectively. For the severity staging of COPD, the mentioned two machine learning classifiers can better differentiate less severity (GOLD1 + GOLD2) group from greater severity (GOLD3 + GOLD4) group. The AUCs of SVM and LR is 0.907 and 0.903 in the training set, and that of 0.799 and 0.797 in the test set. CONCLUSION: The present study showed that the novel radiomics approach based on chest CT images that can be used for COPD identification and severity classification, and the constructed radiomics model demonstrated acceptable performance.
    [Abstract] [Full Text] [Related] [New Search]