These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. Author: Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H. Journal: ACS Appl Mater Interfaces; 2022 Feb 23; 14(7):9126-9137. PubMed ID: 35157422. Abstract: Hydrogels that combine the integrated attributes of being adhesive, self-healable, deformable, and conductive show great promise for next-generation soft robotic/energy/electronic applications. Herein, we reported a dual-network polyacrylamide (PAAM)/poly(acrylic acid) (PAA)/graphene (GR)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) (MAGP) conductive hydrogel composed of dual-cross-linked PAAM and PAA as well as PEDOT:PSS and GR as a conducting component that combines these features. A wearable strain sensor is fabricated by sandwiching the MAGP hydrogels between two dielectric carbon nanotubes (CNTs)/poly(dimethylsiloxane) (PDMS) layers, which can be utilized to monitor delicate and vigorous human motion. In addition, the hydrogel-based sensor can act as a deformable triboelectric nanogenerator (D-TENG) for harvesting mechanical energy. The D-TENG demonstrates a peak output voltage and current of 141 V and 0.8 μA, respectively. The D-TENG could easily light 52 yellow-light-emitting diodes (LEDs) simultaneously and demonstrated the capability to power small electronics, such as a hygrometer thermometer. This work provides a potential approach for the development of deformable energy sources and self-powered strain sensors.[Abstract] [Full Text] [Related] [New Search]