These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.).
    Author: Wan H, Qian J, Zhang H, Lu H, Li O, Li R, Yu Y, Wen J, Zhao L, Yi B, Fu T, Shen J.
    Journal: Int J Mol Sci; 2022 Jan 24; 23(3):. PubMed ID: 35163202.
    Abstract:
    Soil salinity is one of the most significant abiotic stresses affecting crop yield around the world. To explore the molecular mechanism of salt tolerance in rapeseed (Brassica napus L.), the transcriptome analysis and metabolomics analysis were used to dissect the differentially expressed genes and metabolites in two rapeseed varieties with significant differences in salt tolerance; one is an elite rapeseed cultivar, Huayouza 62. A total of 103 key differentially expressed metabolites (DEMs) and 53 key differentials expressed genes (DEGs) that might be related to salt stress were identified through metabolomics and transcriptomics analysis. GO and KEGG analysis revealed that the DEGs were mainly involved in ion transport, reactive oxygen scavenging, osmotic regulation substance synthesis, and macromolecular protein synthesis. The DEMs were involved in TCA cycle, proline metabolism, inositol metabolism, carbohydrate metabolic processes, and oxidation-reduction processes. In addition, overexpression of BnLTP3, which was one of the key DEGs, could increase tolerance to salt stress in Arabidopsis plants. This study reveals that the regulation mechanism of salt tolerance in rapeseed at the transcriptome and metabolism level and provides abundant data for further in-depth identification of essential salt tolerance genes.
    [Abstract] [Full Text] [Related] [New Search]