These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Augmenter of liver regeneration protects the kidney against ischemia-reperfusion injury by inhibiting necroptosis. Author: Liao YJ, Ma YX, Huang LL, Zhang Z, Tan FY, Deng LL, Cao D, Zeng XJ, Yu GQ, Liao XH. Journal: Bioengineered; 2022 Mar; 13(3):5152-5167. PubMed ID: 35164651. Abstract: Necroptosis plays an important role in the pathogenesis of acute kidney injury (AKI), and necroptosis-related interventions may therefore be an important measure for the treatment of AKI. Our previous study has shown that augmenter of liver regeneration (ALR) inhibits renal tubular epithelial cell apoptosis and regulates autophagy; however, the influence of ALR on necroptosis remains unclear. In this study, we investigated the effect of ALR on necroptosis caused by ischemia-reperfusion and the underlying mechanism. In vivo experiments indicated that kidney-specific knockout of ALR aggravated the renal dysfunction and pathological damage induced by ischemia-reperfusion. Simultaneously, the expression of renal necroptosis-associated protein receptor-interacting protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and mixed-lineage kinase domain-like protein (MLKL) significantly increased. In vitro experiments indicated that overexpression of ALR decreased the expression of hypoxia-reoxygenation-induced kidney injury molecules, the inflammation-associated factor tumor necrosis factor-alpha (TNF-α), and monocyte chemotactic protein. Additionally, the expression of RIP1, RIP3, and MLKL, which are elevated after hypoxia and reoxygenation, was also inhibited by ALR overexpression. Both in vivo and in vitro results indicated that ALR has a protective effect against acute kidney injury caused by ischemia-reperfusion, and the RIP1/RIP3/MLKL pathway should be further verified as a probable necroptosis regulating mechanism.[Abstract] [Full Text] [Related] [New Search]