These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Risk assessment of heavy metals in suspended particulate matter in a typical urban river. Author: Li W, Zhang W, Shan B, Sun B, Guo X, Li Z. Journal: Environ Sci Pollut Res Int; 2022 Jul; 29(31):46649-46664. PubMed ID: 35171423. Abstract: Suspended particulate matter (SPM) is a major source of contamination in urban rivers as it serves as a carrier for pollutants, such as heavy metals. In this study, the Beiyun River, northern China, was used as a case study to determine the characteristics of SPM-associated heavy metal spatial distribution, to evaluate the potential ecological risks and identify heavy metal sources. The concentrations of seven heavy metals and other associated indicators (TC, TN, TP, and OM) were measured at 12 sites and analyzed by Pearson correlation (PC) and principal component analyses (PCA). The average concentrations of Cr, Ni, Cu, Zn, As, Cd, and Pb were 70.72, 27.88, 31.35, 115.70, 27.77, 0.23, and 29.62 mg/kg, respectively, with significant spatial differences occurring between some elements. Igeo values established the ranked order of heavy metal pollutant concentrations in SPM as As > Cd > Zn > Cu > Pb > Cr > Ni. [Formula: see text] analysis demonstrated that the ranked order of potential ecological risk from the seven metals was Cd > As > Cu > Pb > Ni > Cr > Zn. Potential ecological risk index (RI) results confirmed the high potential ecological risk in the study area. Among the measured heavy metals, Cd represented the highest pollution risk, as shown by its highest [Formula: see text] value. Correlation analysis (CA) showed that Zn had a strong correlation with Cu and Pb. Significant positive correlations were found between TC, TN, TP, and Cu. Three element pairs, Zn-Cd, Cr-Cu, and Cr-Ni, were also found to have strong correlations. Zn, Cu, and Ni were mainly introduced by human activities including urban industrial sewage discharge (such as metallurgy and electroplating industrial wastewater), agricultural drainage, and landfill wastewater, while Cr mainly originated from natural processes like mineral weathering and atmospheric precipitation. This information on the concentration, risk, and sources of SPM in Beiyun River provides an important reference for the reduction of heavy metal pollution in SPM in a typical river in the Haihe River Basin (China).[Abstract] [Full Text] [Related] [New Search]