These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantification of Global Myoelectric Spatial Activations to Delineate Normal Hamstring Function at Progressive Running Speeds: A Technical Report. Author: Schlink BR, Nordin AD, Diekfuss JA, Myer GD. Journal: J Strength Cond Res; 2022 Mar 01; 36(3):867-870. PubMed ID: 35180196. Abstract: Schlink, BR, Nordin, AD, Diekfuss, JA, and Myer, GD. Quantification of global myoelectric spatial activations to delineate normal hamstring function at progressive running speeds: A technical report. J Strength Cond Res 36(3): 867-870, 2022-Hamstring function is critical to maintain sport performance, and strain injuries to the biceps femoris muscle commonly force an athlete to withdraw from their sport while the muscle heals. Current mechanistic understanding of underlying injury and return-to-play (RTP) guidelines has limited prognostic value because of limitations in technology and nonfunctional assessment strategies to guide clinical care. Integrated structural and functional determinants and dynamic assessment methods are needed to guide advanced rehabilitation strategies for safe and rapid return to sport. A potential solution for assessment of hamstring function is high-density electromyography (EMG), which can noninvasively measure spatial muscle activity in dynamic environments. In this study, we demonstrated the utility of high-density EMG by measuring spatial myoelectric activity from the biceps femoris from a group of recreational athletes running at a range of speeds. The level of significance set for this study was p < 0.05. During the late swing phase of running, we observed increased EMG amplitudes in the central and distal portions of the muscle. There were no changes in this pattern of EMG activation across speed, suggesting that running speed does not affect the general neuromuscular recruitment in the biceps femoris. Applying these methods to athletes with hamstring strains may lead to a more complete understanding of muscle function during rehabilitation and adjunctively support current methods to enhance RTP decision-making.[Abstract] [Full Text] [Related] [New Search]