These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of drug alone and carrier-based GLP-1 dry powder inhaler formulations. Author: Babenko M, Alany RG, Calabrese G, Kaialy W, ElShaer A. Journal: Int J Pharm; 2022 Apr 05; 617():121601. PubMed ID: 35181460. Abstract: The study aimed to develop two types of dry powder inhaler (DPI) formulations containing glucagon-like peptide-1(7-36) amide (GLP-1): carrier-free (drug alone, no excipients) and carrier-based DPI formulations for pulmonary delivery of GLP-1. This is the first study focusing on the development of excipient free GLP-1 DPI formulations for inhaled therapy in Type 2 diabetes. The aerosolisation performance of both DPI formulations was studied using a next generation impactor and a DPI device (Handihaler®) at flow rate of 30 L min-1. Carriers employed were either a 10% w/w glycine-mannitol prepared by spray freeze drying or commercial mannitol. Spray freeze dried (SFD) carrier was spherical and porous whereas commercial mannitol carrier exhibited elongated particles (non-porous). GLP-1 powder without excipients for inhalation was prepared using spray drying and characterised for morphology including size, thermal behaviour, and moisture content. Spray dried (SD) GLP-1 powders showed indented/dimpled particles in the particle size range of 1-5 µm (also mass median aerodynamic diameter, MMAD: <5 µm) suitable for pulmonary delivery. Across formulations investigated, carrier-free DPI formulation showed the highest fine particle fraction (FPF: 90.73% ± 1.76%, mean ± standard deviation) and the smallest MMAD (1.96 µm ± 0.07 µm), however, low GLP-1 delivered dose (32.88% ± 7.00%, total GLP-1 deposition on throat and all impactor stages). GLP-1 delivered dose was improved by the addition of SFD 10% glycine-mannitol carrier to the DPI formulation (32.88% ± 7.00%-45.92% ± 5.84%). The results suggest that engineered carrier-based DPI formulations could be a feasible approach to enhance the delivery efficiency of GLP-1. The feasibility of systemic pulmonary delivery of SD GLP-1 for Type 2 diabetes therapy can be further investigated in animal models.[Abstract] [Full Text] [Related] [New Search]