These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Camellia sinensis small GTPase gene (CsRAC1) involves in response to salt stress, drought stress and ABA signaling pathway. Author: Xu X, Ye X, Xing A, Wu Z, Li X, Shu Z, Wang Y. Journal: Gene; 2022 May 05; 821():146318. PubMed ID: 35181507. Abstract: RAC/ROP gene (RACs) is a plant-specific small GTPases. RACs play an irreplaceable role in the tissue dynamics of cytoskeleton, vesicle transport and hormone signal transmission in plants. In the present study, a novel gene from RACs family, CsRAC1, was identified from tea [Camellia sinensis (L.) O. Kuntze]. CsRAC1 contained a 591-bp open reading frame and encoded a putative protein of 197 amino acids. Subcellular localization analysis in leaves of transgenic tobacco and root tips of Arabidopsis thaliana showed that CsRAC1 targeted the nucleus and cell membrane. The expression of CsRAC1 induced by abiotic stresses such as cold, heat, drought, salt and abscisic acid has also been verified by RT-qPCR. Further verification of biological function of CsRAC1 showed that overexpression of CsRAC1 increased the sensitivity of A. thaliana to salt stress, improved the tolerance of mature A. thaliana to drought stress, and enhanced the inhibition of ABA on seed germination of A. thaliana. In addition, the antioxidant system regulated by CsRAC1 mainly worked in mature A. thaliana. The results indicate that CsRAC1 is involved in the response of C. sinensis to salt, drought stress and ABA signaling pathway.[Abstract] [Full Text] [Related] [New Search]