These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-green tea extract. Author: Sadeghi A, Razavi SMA, Shahrampour D. Journal: Int J Biol Macromol; 2022 Apr 30; 205():341-356. PubMed ID: 35182564. Abstract: This research focused on developing an eco-friendly packaging for food products through blending polycaprolactone (PCL) and polylactic acid (PLA) as two biodegradable polymers, and green tea extract (GTE) as a natural antioxidant pushing the films toward active packaging; thereby, the morphological, mechanical, thermal, barrier, antioxidant, and biodegradation features of the composite films were analyzed. The films containing 30% PLA exhibited a reduction of 14.96%, 38.89%, 8.75%, and 35.55% in the hydrophilicity, water-solubility, water vapor permeability (WVP), and oxygen transition rate (OTR), respectively. Furthermore, GTE incorporation led to antioxidant behavior as well as better barrier properties (up to 6.25% decrease in WVP and 55.78% in OTR), mechanical properties (an increase of 14.96%, 38.89%, and 8.75% in elastic modulus, tensile strength, and elongation at break, respectively) and biodegradable rate (124.13%). Indeed, the presence of polyphenol compounds in green tea improved molecular interaction between the polymers and launched a co-continuous structure and an unparalleled level of compatibility, which was also approved by the changes in FTIR spectra of the PCL/PLA films. These results demonstrate the benefits of blending PLA with PCL and GTE integration in terms of operational enhancement and film activating, respectively, to provide reliable food packaging.[Abstract] [Full Text] [Related] [New Search]