These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Graphitic biochar with in situ confined magnetic iron oxides via synchronous pyrolysis of lignin as an effective H2O2 activator for fast degradation of organic pollutants.
    Author: Zhang X, Wu H, Chen M, Li Z.
    Journal: Int J Biol Macromol; 2022 Apr 30; 205():329-340. PubMed ID: 35183602.
    Abstract:
    Magnetic iron oxide confined in carbon capsules/biochar composite (FeOx@g-BC) was created using in-situ synchronous pyrolysis of alkali lignin as a low-cost carbon source. Characterization results indicated the FeOx was confined in carbon nanotubes and carbon capsules, inhibiting growing of nanoparticles and deactivation. The composite catalyst demonstrated significant activity in activating H2O2 for the degradation of persistent organic pollutants in water over a wide pH range. Particularly, tetracycline (TC) could be completely degraded within 25 min, even at a high pH of 6.8, which performed much better than previously reported Fenton-like catalysts. Moreover, the excellent magnetism of FeOx@g-BC aided in its recovery and reuse. The stability of FeOx@g-BC recycling was also measured by continuous cycles of reactions. According to ESR analysis and free radical quenching studies, OH and 1O2 were discovered as the dominant active species governing the degradation of TC, and two pathways of TC degradation were proposed. This study developed a novel heterogeneous catalyst for catalytic degradation of persistent organic contaminants in water by the value-added usage of lignin.
    [Abstract] [Full Text] [Related] [New Search]