These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: L-threonine dehydrogenase from Escherichia coli K-12: thiol-dependent activation by Mn2+.
    Author: Craig PA, Dekker EE.
    Journal: Biochemistry; 1986 Apr 22; 25(8):1870-6. PubMed ID: 3518793.
    Abstract:
    Addition of 1 mM Mn2+ to all solutions in the final chromatographic step used to purify L-threonine dehydrogenase (L-threonine:NAD+ oxidoreductase, EC 1.1.1.103) from extracts of Escherichia coli K-12 routinely provides 30-40 mg of pure enzyme per 100 g wet weight of cells with specific activity = 20-30 units/mg. Enzyme dialyzed exhaustively against buffers containing Chelex-100 resin has a specific activity = 8 units/mg and contains 0.003 or 0.02 mol of Mn2+/mol of enzyme as determined by radiolabeling studies with 54Mn2+ or by atomic absorption spectroscopy, respectively. Dehydrogenase activity is completely abolished by low concentrations of either Hg2+ or Ag+; of a large spectrum of other metal ions tested, only Mn2+ and Cd2+ have an activating effect. Activation of threonine dehydrogenase by Mn2+ is thiol-dependent and is saturable with an activation Kd = 9.0 microM and a Vmax = 105 units/mg. Stoichiometry of Mn2+ binding was found to be 0.86 mol of Mn2+/mol of enzyme subunit with a dissociation constant (Kd) = 8.5 microM. Mn2+ appears to interact directly with threonine dehydrogenase; gel filtration studies with the dehydrogenase plus 54Mn2+ in the presence of either NAD+, NADH, L-threonine, or combinations thereof show that only Mn2+ coelutes with the enzyme whereas all other ligands elute in the salt front and the stoichiometry of the dehydrogenase-Mn2+ interaction is not affected in any instance. A theoretical curve fit to data for the pH-activity profile of Mn2+-saturated enzyme has a pKa = 7.95 for one proton ionization. The data establish L-threonine dehydrogenase of E. coli to be a metal ion activated enzyme.
    [Abstract] [Full Text] [Related] [New Search]